SWOT INSTITUTE BINOMIAL THEOREM XI-TEST

Time: 1 hr.

- 1. Show that $9^{n+1} 8n 9$ is divisible by 64, whenever n is a positive integer.
- 2. Show that the middle term in the expansion of $(1 + x)^{2n}$ is $\frac{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1)}{n!}$ 2n x^n , where n is a positive integer.
- 3. Find the 4^{th} term in the expansion of $(x 2y)^{12}$.
- 4. Find the 13th term in the expansion of $\left(9x \frac{1}{3\sqrt{x}}\right)^{18}$, $x \neq 0$.
- 5. Find the middle terms in the expansion of

$$\left(3-\frac{x^3}{6}\right)^7$$

- 6. In the expansion of $(1 + a)^{m+n}$, prove that coefficient of a^m and a^n are equal.
- 7. Prove that the coefficient of x^n in the expansion of $(1 + x)^{2n}$ is twice the coefficient of x^n in the expansion of $(1 + x)^{2n-1}$.
- 8. Find a positive value of m for which the coefficient of x^2 in the expansion $(1 + x)^m$ is 6.
- 9. Find the term independent of x in the expansion of $\left(\frac{3}{2}x^2 \frac{1}{3x}\right)^6$.

1