SWOT INSTITUTE
 BINOMIAL THEOREM XI-TEST

Time: 1 hr .

1. Show that $9^{n+1}-8 n-9$ is divisible by 64 , whenever n is a positive integer.
2. Show that the middle term in the expansion of $(1+x)^{2 n}$ is $\frac{1 \cdot 3 \cdot 5 \ldots .(2 n-1)}{n!} 2 n x^{n}$, where n is a positive integer.
3. Find the $4^{\text {th }}$ term in the expansion of $(x-2 y)^{12}$.
4. Find the $13^{\text {th }}$ term in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}, x \neq 0$.
5. Find the middle terms in the expansion of

$$
\left(3-\frac{x^{3}}{6}\right)^{7}
$$

6. In the expansion of $(1+a)^{m+n}$, prove that coefficient of a^{m} and a^{n} are equal.
7. Prove that the coefficient of x^{n} in the expansion of $(1+x)^{2 n}$ is twice the coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}$.
8. Find a positive value of m for which the coefficient of x^{2} in the expansion $(1+x)^{m}$ is 6 .
9. Find the term independent of x in the expansion of $\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{6}$.
